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ABSTRACT

We propose an example-based approach for enhancing resolution of
range-images. Unlike most existing methods on range-image super-
resolution (SR), we do not employ a colour image counterpart for
the range-image. Moreover, we use only a small set of range-images
to construct a dictionary of exemplars. Considering the importance
of edges in range-image SR, our formulation involves an edge-based
constraint to better weight appropriate patches from the dictionary in
a sparse-representation framework. Moreover, realizing the need for
large up-sampling factors in case of range-images, we follow a hi-
erarchical strategy for estimating the high-resolution range-images.
We demonstrate that our strategy yields considerable improvements
over the state-of-the-art approaches for range-image SR.

Index Terms— Range-image super-resolution, Hierarchical es-
timation, Edge-preservation, Sparse-representation.

1. INTRODUCTION

In recent years, range cameras and scanners are being realized as im-
portant dominant acquisition modality in computer vision and mul-
timedia community, a reason being that a variety of technologies
have been developed for range acquisition such as laser scanning [1],
time-of-flight (ToF) imaging [3, 2], and structured or coded lighting
[4], among which some provide high-acquisition speed, require little
manual intervention, and are relatively low-cost and easily available.
However, these advantages are often traded-off with limited resolu-
tion and structural accuracy in some types of range imaging devices;
examples being the ToF range cameras [2], and the Kinect camera
[5]. This motivates the development of computational approaches to
enhance the resolution and accuracy.

Typically, range-images acquired from low-resolution (LR)
range cameras are such that it is required to enhance their resolu-
tions by large factors (unlike in optical image SR) such as 4 or 8,
so as to attain a reasonable perceptual quality [6, 2]. As most of the
content in range-images lacks texture details, the primary challenge
in range-image SR is to achieve good localization of the inter-object
edges and discontinuities when considering such large up-sampling
factors, while maintaining the intra-object gradual depth variations.
In this respect, naive approaches of resolution enhancement by
off-the-shelf image interpolation methods result in heavy loss of
localization and accuracy.

As a result, in recent years various sophisticated approaches for
resolution enhancement of range-images have been reported [6, 7,
2, 8]. Considering the primary requirements of large up-sampling
factors and edge preservation, a key principle upon which most of
the approaches are based, is the utilization of a high-resolution (HR)

colour image of the same scene. This is motivated by the observa-
tion that range discontinuities often coincide with those in colour
image, and the latter can be easily captured using any off-the-shelf
digital camera. Thus, colour discontinuities and local similarity of
colour information derived from a HR colour image helps in localiz-
ing range discontinuities on the HR grid.

While such colour-image-based approaches do yield good qual-
ity resolution enhancement, it is possible that in some scenarios
only range data is available. For instance, applications involving
transmitting range information, 3D modeling, some cases of ges-
ture analysis etc. may require the involvement of only range data.
Moreover, the above mentioned colour-image-based approaches in-
herently require accurate registration of the range and colour image,
which in turn necessitates calibration between the optical and range
cameras. Using only range data can circumvent such a need for cal-
ibration/registration. Thus, one can clearly recognize a need for res-
olution enhancement approaches which use only range cameras.

To address this concern, we propose an example-based approach
for range-image resolution enhancement, which does not employ a
HR colour image. Moreover, unlike some similar methods for opti-
cal image SR, we use only a small set of range-images to construct
our exemplar dictionary. Our formulation involves an edge-based
constraint so as to aid in the primary task of discontinuity local-
ization in range-image SR. Moreover, as range-image SR typically
involves large up-sampling factors, we propose a hierarchical strat-
egy for estimating the HR range-images. We demonstrate that our
strategy yields considerable improvements over the state-of-the-art
approaches for range-image SR.

1.1. Related work

As mentioned above, most range-image enhancement approaches
employ a registered HR colour image, in order to exploit the discon-
tinuity coincidence between the range and colour images [6, 7, 2, 8].
Our approach takes a different route which does not require HR
colour image and hence does away with the necessity of an opti-
cal camera, and associated calibration/registration. Nevertheless, we
do compare our approach with some of these methods, as a part of
our experimentation.

Our method is motivated from the learning-based image super-
resolution approaches, which uses training data to create a dictionary
of local patches. More related to our work are those learning-based
SR approaches which reconstruct the HR patches which involves se-
lection of dictionary patches via sparse representation [9]. However,
as compared to such image SR approaches, we require a very small
set of range-images (about 3-4), to construct our dictionary. We be-
lieve that this might be because of the textureless behaviour of the



range data, which involves much less variations in the visual content
than the optical images.

Among the sparsity-based colour image SR approaches, the one
which is most closely related to ours is [11], whose edge-preserving
strategy forms the basis of our approach. We believe that an edge-
preserving approach is especially suitable for range-images, where
the resolution enhancement is primarily gauged in terms of retention
of object shape and inter-object discontinuities. Moreover, another
key difference with this (and with other image SR-based methods),
we improve the approach to work better for large up-sampling fac-
tors (e.g. 4, 8) which is a crucial requirement for range-image SR.
On the other hand, the image SR methods typically demonstrate res-
olution enhancement by small factors (e.g. 2, 3) [6, 10, 11, 12].

Indeed, recently an example-based super-resolution approach is
reported in [13], which follows an MRF-based strategy similar to
[14]. However, unlike our method, this approach requires a much
larger training dataset, does not use any explicit edge-based con-
straint, and demonstrates resolution enhancement only by factor of
4. In fact, as we demonstrate in Section 3, our method also shows
significant improvements over [13].

Thus, the contributions of this work are: 1) Our approach obvi-
ates the need for registered colour image, unlike the state-of-the-art
methods. 2) Our edge-preserving sparse-representation framework
is particularly novel and useful for range-image SR considering the
need for good discontinuity localization. 3) Our proposed hierar-
chical approach further helps to improve the SR efficacy for large
up-sampling factors. 4) Our method requires much less training data
than similar existing approaches.

2. PROPOSED APPROACH

We now discuss our approach in detail. For better clarity, the de-
scription below is divided into: 1) Edge-preserving super-resolution
method of [11], in the context of range-image SR, and 2) Hierarchi-
cal strategy for range-image SR with high up-sampling factors.

2.1. Super-resolution via edge-preserving sparse-representation

We employ a patch-based super-resolution approach, where the
HR range-image is constructed in a patch-wise manner. Each HR
range-image patch is in turn reconstructed as a linear combination of
patches in a dictionary acquired from a small set of high-resolution
range-images. It often so occurs that only a few patches from the
dictionary are sufficient to reconstruct the HR patch, and thus the
weight vector (a.k.a coefficient vector) that weighs the dictionary
patches for reconstruction, is sparse. A class of image SR meth-
ods are based on this sparse-representation principle, and involve
solving the following problem to estimate the coefficient vector ĉ

ĉ = argmin
c
{‖y − SBAc‖22 + λ‖c‖1}. (1)

The first term in the above equation computes the matching cost be-
tween a low-resolution patch y from the LR range observation and
the corresponding weighted patches in the dictionary A, which are
blurred and down-sampled by known operators B and S, respec-
tively. The second term is an l1-norm which enforces a sparse ĉ.

The work in [11] proposes an additional gradient-based con-
straint in equation (1). The gradient information mentioned above
is defined as ‘edginess’, which is computed using 1-D processing of
images which is known to perform better than the conventional gra-
dient [15]. This is computed by applying a smoothing operator along

one direction and it’s derivative operator along the orthogonal direc-
tion. Denoting the gradient magnitude operator as Eg, equation (1)
is modified as

ĉ = argmin
c
{‖y − SBAc‖22 + λ‖c‖1

+β‖Eg{y} −Eg{SBAc}‖22}. (2)

The additional constraint in eq. (2) minimizes the differences be-
tween gradient information of LR patch and that of the down-
sampled version of the reconstructed patch. This is particularly
important in the context of range data, where the discontinuity
information is perceptually most significant.

The dictionary A is computed based on an adaptive approach
proposed in [10], which involves creating multiple sub-dictionaries
out of a mother-dictionary via K-means clustering of HR training
patches, and Principal Component Analysis (PCA) applied to each
cluster. During the coefficient estimation each sub-dictionary is se-
lected adaptively for each LR patch, and is used as A. The parame-
ters λ and β are assigned weights to the edge-based and sparsity con-
straints, respectively. These are also computed using MAP (Maxi-
mum A Posteriori) estimation [10]. Given, the dictionary and the
parameters, the equation (2) can be solved using iterative shrinkage
algorithm as explained in [16] to estimate ĉ. The estimated ĉ is then
used to linearly combine the dictionary patches to reconstruct the HR
patch, which are in turn used to reconstruct the complete image. This
is done in reverse way of patch extraction with the averaged overlap-
ping portions of patches. Due to space limitation, we encourage the
reader to refer to [11, 10] for details on dictionary computation and
image reconstruction.

2.2. Hierarchical strategy

The above approach has been shown to perform for optical image SR
by factors of 2 or 3. However, as mentioned above, for range-image
SR, the up-sampling factors involved are much higher (e.g. 4, 8).
An associated concern with this, is the localization of perceptually
important discontinuities in range-images. This is because the LR
images in such cases are very small and do not provide enough infor-
mation about the shape definitions and discontinuity localization at
HR. While the edge-preserving constraint in the above approach can
contribute some additional information in this respect, the matching
costs can still involve ambiguities when the resolution of the input
images is very low.

To mitigate this concern, we follow an hierarchical strategy. In-
stead of directly up-sampling by a large factor, we improve resolu-
tion in steps of 2. Clearly, an advantage of such an hierarchical struc-
ture is that at each step the information loss in the down-sampling of
the estimate (involved in the matching cost), is not as high as in the
direct case. This reduces the ambiguities in the matching cost at each
step in both the first and second terms of equation (2). Moreover, the
edge-based constraint ensures a reasonable localization at each step,
which provides a well-localized ‘LR’ input image for the next step.

Interestingly, we have used same mother-dictionary across all
the steps, which is derived from patches extracted from the training
images at the highest resolution (as opposed to creating dictionary
from down-sampled versions of training images). This is due to the
fact that, although the training images are few, one can still have hun-
dreds of patches from these. Given the limited amount of visual con-
tent in the range-images, such a dictionary is enough to contain the
multi-scale local information required for an hierarchical approach.



Fig. 1. SR by factor of 2: Rows 1-2 show the results for scenes Cones and Aloe, respectively. Columns 1-5 show the result on each scene for
GIF [19], ATGV [2], EB [13], the proposed approach, and the original scene respectively.

3. EXPERIMENTAL RESULTS

We now provide some experimental results for our approach. We
used range data from the Middlebury dataset [17, 18], which in-
volves a rich variety of scenes. The dimensions of the HR range-
images used for our training data and for ground-truth validation are
of the order of 500× 500. We blurred and down-sampled some HR
images depending on the resolution factor in each experiment, and
used the corresponding LR images as our observations. For instance,
after down-sampling by factor of 2, 4, and 8, the image sizes were of
the order 250×250, 125×125 and 60×60, respectively. The train-
ing data consists of 4 HR images, (viz. different from those on which
our approach was validated). The patch-size in our experiments was
7× 7, and the total no. of training patches were 1000.

We experimented with SR factors of 2, 4, and 8, using both
the direct approach and hierarchical approach. In addition, we also
compared with two recent approaches which employ the registered
colour image [7, 19, 2]. These are arguably two of the best per-
forming state-of-the-art approaches. We also compare with the re-
cent example-based approach [13]. For all these approaches we
use the publicly available codes, provided by the respective authors
[20, 21, 22]. Additionally, for the method in [13], we show results
obtained when using the training data provided by the authors, as
this yields much better results. We provide qualitative as well as
quantitative results for these experiments.

3.1. Visual results and comparisons

We first show some visual results in Figs. 1, 2, and 3, for the cases
of resolution enhancement by 2, 4, and 8, respectively. In all fig-
ures, each row shows results for one example scene, over different
approaches. The results from left to right in each row are for the
following methods: Guided Image Filter (GIF) [19, 7], Anisotropic
Total Generalized Variation (ATGV) [2], Example-based approach
(EB) [13], and the proposed approach (with hierarchical estimation
for factors of 4 and 8). The selected scenes are chosen as they contain
significant amount of discontinuity variations, so as to better gauge
the performance 1.(Please zoom the pdf soft-copy up to 300-400%,
to view the images close to their actual sizes.)

Note that for the case of SR by a factor of 2 (Fig. 1), results of all
approaches are relatively comparable at a first glance. Nevertheless,
one can observe clear improvements in the edge-preservation using

1Interested readers are encouraged to visit the url
http://faculty.iitmandi.ac.in/∼arnav/sup mat.pdf for more visual results
at larger scale. (Please type the link manually.)

our approach, while the other methods show relatively more edge-
distortions and/or bleeding at the edges.

These distortions at the discontinuities increase for higher up-
sampling factors, as can be seen in the Figs. 2 and 3, for higher up-
sampling factors. Particularly, the example-based approach (which,
like us, does not use any colour images information) deteriorates
heavily in terms of preserving object shapes. Interestingly, our ap-
proach also performs better in terms of discontinuity localization and
shape preservation as compared to the more popular colour-image
based methods in many cases. This clearly indicates that even with-
out the HR colour image information, one can indeed achieve high-
quality resolution enhancement given a good estimation framework.

3.2. Quantitative results

Having demonstrated some qualitative improvements over the state-
of-the-art, we now validate our approach and its better performance
quantitatively. We provide quantitative results over more scenes,
which we could not show visually due to space constraints. Our
quantitative metrics involve root mean square error (RMSE) and
structural similarity (SSIM) [23], where the latter is shown to bet-
ter correlate with human perception. Thus, both metrics gauge the
approaches differently. The bracketed number, mentioned in the col-
umn corresponding to our method, denotes the rank of our approach
in that row. The two columns for our approach in scale-4 and scale-8
cases mentioning (NH) and (H), indicate results for non-hierarchical
and hierarchical approach, respectively.

The quantitative results mirror the improvements in the qualita-
tive results shown above. We can note that we significantly outper-
form the example-based approach in all cases. Additionally, our ap-
proach also favourably compares with the image-based approaches
in most cases. Even for these cases, the improvement is considerable
in many cases.

4. CONCLUSION

We proposed an approach for example-based resolution enhance-
ment for range-images. Unlike the popular strategy, our approach
does not use any associated colour image, and requires only a range
camera, thus obviating any registration/calibration. We formulate
our method in an elegant sparse representation framework which
also employs an edge-preserving constraint. Moreover, we also pro-
pose an hierarchical strategy to enable enhancement by high up-
sampling factors. Our work indicates that given a good estimation
framework, an example-based approach can outperform state-of-the-
art methods including those based on using HR colour-image.



Fig. 2. SR by factor of 4: Rows 1-2 show the results for scenes Cones and Aloe, respectively. Columns 1-5 show the result on each scene for
GIF [19], ATGV [2], EB [13], the proposed approach, and the original scene respectively.

Fig. 3. SR by factor of 8: Rows 1-3 show the results for scenes Cones, Aloe and Baby, respectively. Columns 1-5 show the result on each
scene for GIF [19], ATGV [2], EB [13], the proposed approach, and the original scene respectively.

Table 1. Quantitative results and comparisons

Images Metric Scale-2 Scale-4 Scale-8

GIF [19] AGTV [2] EB [13] Ours GIF [19] AGTV [2] EB [13] Ours (NH) Ours (H) GIF [19] AGTV [2] EB [13] Ours (NH) Ours (H)

Cones RMSE 3.62 2.82 4.08 2.13 (1) 4.28 4.16 5.88 4.20 (3) 3.73 (1) 6.32 6.99 9.39 6.45 (3) 6.23 (1)

SSIM 0.9650 0.9788 0.9606 0.9870 (1) 0.9571 0.9580 0.9356 0.9560 (4) 0.9640 (1) 0.9353 0.9195 0.8963 0.9241 (3) 0.9252 (2)

Teddy RMSE 2.70 2.19 3.18 1.74 (1) 2.30 2.98 4.53 3.11 (4) 2.86 (2) 4.27 4.96 7.00 4.89 (3) 4.73 (2)

SSIM 0.9731 0.9825 0.9668 0.9890 (1) 0.9685 0.9680 0.9495 0.9657 (4) 0.9701 (1) 0.9531 0.9453 0.9196 0.9369 (4) 0.9387 (3)

Aloe RMSE 5.43 4.15 4.93 2.89 (1) 6.09 6.00 7.29 5.68 (2) 5.12 (1) 9.04 10.94 12.84 8.67 (2) 8.57 (1)

SSIM 0.9336 0.9670 0.9511 0.9826 (1) 0.9236 0.9350 0.9209 0.9345 (3) 0.9462 (1) 0.8906 0.8842 0.8441 0.8840 (4) 0.8846 (2)

Baby RMSE 3.02 2.41 3.26 1.81 (1) 3.55 3.44 4.49 3.36 (2) 2.97 (1) 4.88 5.80 6.33 5.37 (3) 4.86 (1)

SSIM 0.9768 0.9872 0.9803 0.9921 (1) 0.9713 0.9750 0.9659 0.9732 (3) 0.9786 (1) 0.9575 0.9575 0.9445 0.9465 (3) 0.9520 (2)

Venus RMSE 2.66 1.53 1.92 0.98 (1) 2.75 2.75 1.89 1.95 (3) 1.67 (1) 3.30 4.85 3.80 2.99 (2) 2.63 (1)

SSIM 0.9785 0.9928 0.9902 0.9967 (1) 0.9774 0.9777 0.9898 0.9875 (3) 0.9904 (1) 0.9739 0.9478 0.9712 0.9771 (2) 0.9798 (1)

Plastic RMSE 2.12 1.64 3.16 1.81 (2) 2.42 2.39 3.31 2.68 (4) 2.63 (3) 3.76 4.16 5.33 5.00 (4) 4.55 (3)

SSIM 0.9888 0.9928 0.9827 0.9932 (1) 0.9847 0.9843 0.9751 0.9826 (4) 0.9833 (3) 0.9738 0.9721 0.9633 0.9614 (4) 0.9613 (5)
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