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ABSTRACT

We propose an example-based super-resolution (SR) framework,
which uses a single input image and, unlike most of the SR meth-
ods does not need an external high resolution (HR) dataset. Our
SR approach is based in sparse representation framework, which
depends on a dictionary, learned from the given test image across
different scales. In addition, our sparse coding focuses on the detail
information of the image patches. Furthermore, in the above pro-
cess we have considered non-local combination of similar patches
in the input image, which assist us to improve the quality of the SR
result. We demonstrate the effectiveness of our approach for inten-
sity images as well as range images. Contemplating the importance
of edges in images of both these modalities, we have added an edge
preserving constraint that will maintain the continuity of edge re-
lated information to the input low resolution image. We investigate
the performance of our approach by rigorous experimental anal-
ysis and it shows to perform better than some state-of-the-art SR
approaches.
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1. INTRODUCTION

Super-Resolution (SR) is a process of increasing resolution of
images. Recently, availability of high resolution (HR) sensors for
intensity images at lower costs may pose a question for the need of
super-resolution algorithms for this type of images. Still, there are
some physical aspects like distance, bandwidth requirement, stor-
age etc. are present in current scenario, which prompts us to super-
resolve intensity images. On the other hand high quality range im-
age' finds its application in computer vision, multimedia etc., and
there is a requirement of enhancing resolution of range images, cap-
tured by low cost range cameras like ToF cameras, Kinect cameras
etc [7,9].
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Interpolation techniques [12,13] can approximate the increase in
resolution of an image but they often fail to preserve subtle details.
As a result, SR techniques have evolved so as to achieve the goal
of preserving detail information in case of intensity image. In re-
cent years, single image SR methods are substituting multi-image
SR approaches as the former is more useful in practical scenar-
ios and has also shown better performance. Though, single im-
age SR method, by definition doesn’t require multiple images of
the target scene, the process does require some HR example im-
ages [4, 14, 18,21,22]. The relationship learned from the HR-LR
(high resolution-low resolution) patch pair from these example im-
ages form the basis of example based single image SR.

In case of range images, most of the SR approaches borrow the
prominent edge and related information from a HR color image of
the target scene [7, 10]. This is because, the discontinuities present
in the range images concur with those in color image. But some
scenarios like transmission of depth information, 3-D modeling etc.
may force us to reconstruct dense depth information using only a
single LR range image. It can be addressed by example based SR
methods in a similar fashion as is done in case of intensity image
SR. The example based methods [1] devoid of registration which
might be required for aligning range and color images in case of
acquisition made using uncalibrated camera for both types of im-
ages.

The performance of the example based SR approach depends on
the relationship, that has been learned from HR-LR patch pairs.
This requires a large number of example images to be collected
for training purpose. Yang et al. [21] and Zeyde et al. [22] exploit
the same principal to learn HR-LR dictionary pair in sparse do-
main framework. The approaches stated in references [4, 14] have
learned multiple HR sub-dictionaries to employ the subtle details
and implant them adaptively in the LR patches. But an important
shortcoming of all these methods is relying on predefined dictio-
nary(s) for all kinds of image variations. In addition, the absence
of similar patches to the test patch in the trained dictionary may de-
grade the SR outcomes. Furthermore, learning the relationship be-
tween HR-LR patch pairs from a large number of images increase
the computational time.

These issues have been addressed in this work. We propose a SR
framework which doesn’t use any image other than the input LR
image. Indeed, some works have been reported in the literature in
the same direction [8,20]. Glasner et al. [8] proposed a method
which utilizes the patch redundancies present in the same scale
as well as across different scales. The principal idea behind this
method is the presence of similar patches in the image at different
scales. Whenever, a patch similar to the test patch has been found
in a down-scaled version of the image, the parent patch of the same
has been copied to the appropriate location of the HR image grid.



The work has been extended by incorporating a group sparsity con-
straint in reference [20]. Unlike these methods, we extract patches
of same dimension from the LR test image across different scales
and cluster them according to the detail information present in the
patches. We then learn compact sub-dictionaries from these clus-
ters. Moreover, we focus on using the detail information for SR.
We extract such detail information in an elegant non-local mean
approach and this is followed up by sparse coding the same with
the help of learned sub-dictionaries. In addition, we have added an
effective edge preserving constraint, which has been proposed in
the work [14]. This constraint will compel the SR outcome to fol-
low the similar edge like information to the LR test image. Thus,
the effectiveness of our approach is due to the sparse representa-
tion involving an edge preservation and adaptive sub-dictionaries,
which encodes the information about patch details, computed using
non-local means. In contrast with most of the SR approaches, we
have demonstrated the effectiveness of our SR approach in case of
intensity images as well as range images.

Thus, our contributions can be summarized as: 1) Our approach
obviates the need of any extra image in SR. Though some works
have been published towards similar direction for intensity image
SR, but this approach is completely new in case of range image SR.
Moreover, we have learned multiple dictionaries from the patches
extracted from the test image to work in sparse environment. 2) We
super-resolve perceptually important detail information extracted
from the patches by using non-local mean operation. 3) The edge
preserving constraint plays a crucial role in preserving edge related
information in the SR outcome. 4) We demonstrate the improve-
ment of SR in case of intensity as well as range images.

The the rest of the paper is organized as follows: Section 2 illus-
trates the background of SR in sparse domain. Section 3 discusses
the proposed approach in greater details. The experimental results
have been analyzed in section 4. Finally, the paper is concluded in
section 5.

2. SR IN SPARSE DOMAIN

Mathematical formulation of the process of LR image formation
provides us clues about getting the HR image back and one of the
most popular mathematical model is

y = DHx + v, (D

where y € R™ is the observed LR image which has been generated
by blurring (H € R™") and down-sampling (D € R"™") the HR
scene X € R". In this case n > m and v is the noise component.
It is now clear that SR is an inverse problem of finding x from its
LR observation y. Since n > m, the problem of finding an x from
y became under-determined as there can be many x to produce the
same y. Thus regularization approaches have been incorporated
into the problem such as Tikhonov regularization [23], Total Vari-
ation (TV) regularization etc. [15]. These methods regularize the
SR problem but fail to protect subtle details like edges, textures
etc. in the SR outcome. Thus, a lot of regularization methods have
been unfolded and one of the recently proposed approach is sparsity
regularization, where image is represented in sparse domain.

Here, an image is represented as a linear combination of few
columns of a dictionary matrix (A), thus x = Ac. ¢ being the sparse
coefficient vector, plays an important role in finding the suitable
atoms from A. Thus the goal is to find ¢ and can be estimated by
solving the following optimization problem [6]:

¢ = argmin {ly ~ DHACI + A [ell ] 2

where || - ||;: finds the /;-norm of a vector and Lagrangian multi-

Figure 1: Illustration of patch similarity for intensity images in
same scale and across different scales.

plier A weights between data term |ly — DHAc|[3 and sparsity term
|lell;. Here, /;-norm has been used to enforce sparsity on ¢ instead
of [p-norm as it’s computation asks for combinatorial search and is
NP-hard in nature. It has been found that /;-norm minimization is
the closest convex optimization of /y-norm minimization [5]. From
eqn. (2), one can observe that the computation of ¢ involves require-
ment of D, H and A. D and H are typically assumed to be known
and the dictionary matrix A is the most important source of infor-
mation in SR. The process of finding the dictionary A is discussed
in the following section.

3. PROPOSED APPROACH

The proposed work super-resolve the input LR image without
assistance of other HR image. It involves learning the coarse to
fine information of patches from the LR test image and keeping in
the form of sub-dictionaries and has been discussed in the subsec-
tion 3.1. Keeping in mind the significance of detail information, we
extract and restore them by the help of the learned sub-dictionaries
and non-local similar patches. This reconstruction process has been
discussed in subsection 3.2.

3.1 Learning Dictionary:

In current scenario, the LR test image (y) is the only source of in-
formation. To exploit the available information in appropriate way,
we have to investigate similar information in image pyramid by
up/down-scaling the input image. One can examine such pyramids
for intensity as well as range images in Figures 1 and 2 respectively.
It can be observed that the patches similar to P1 for intensity image
can be found in the same scale and across different scales and those
are found to be P1°. Same is true for the range image also. In fact,
the region present at the same distance from the range camera will
have same intensity. Thus, there will be plenty of similar patches
available for range images. These similar patches across scales will
provide coarse to fine information.

To grab such information we interpolate the LR test image to the
HR image grid and extract patches of size /p x +/p from it. We
down-sample the interpolated image in three levels by s* factors to



Figure 2: Illustration of patch similarity for range images in
same scale and across different scales.

complete the image pyramid. Again the procedure of patch extrac-
tion is followed for down-sampled versions of the interpolated im-
age. This operation will allow us to have more patches for training.
Thus, we have patches of same dimension from different resolu-
tions. All the extracted patches have been clustered using K-means
clustering algorithm depending on their detail information®. This
process will group the raw patches with similar detail information
across different scales and same scale together into a cluster.

Due to clustering of similar patches extracted across different
scales, we may get fine information related to coarse information
for the target patch. These information will assist us in recon-
structing the HR image. To give importance to perceptually im-
portant detail component like edges, corners etc. we extract the
detail information by subtracting the mean component from each
of the clusters and analyze them based on their principal compo-
nents to achieve compact sub-dictionaries. Thus, we have some
sub-dictionaries Ay and there representative centroids . It has to
be noted that the centroids are achieved from the K-means cluster-
ing and are related to the detail information of the corresponding
cluster. For more discussion on how the principal components of
each cluster have been analyzed one may refer to the article [4].

3.2 HR image reconstruction:

Our reconstruction starts with interpolating the LR test image
to the HR grid. This interpolated image X will work as an initial
approximation of the unknown HR image. This image lacks detail
information like textures, edges, corners etc. and these need to be
restored, which is very important from human perception point of
view. This argument is invalid in case of range image, as these
are not directly perceived by human beings and are used for some
applications only. But if we examine any range image (say Fig. 2),
we will be able to find that the most important component of range
images are the detail information like edges, corners etc. and if we
enhance those properly, a good SR outcome is expected.

2Here, the ‘detail information’ is computed by subtracting low pass filtered patch from
its original version.

Thus, we focus to reconstruct detail information by restoring in
elegant sparse coding environment. Unlike traditional methods of
computing detail information, we subtract the weighted average of
non-local similar patches from the target patch in the image. The
reason being that the non-local mean will contain all the variations
of the smooth component and thus, if we subtract this from the test
patch an appropriate representation of the detail information can be
achieved.

Here, the patches are extracted from the image by x; = PX,
where P; is assumed to be a patch extractor matrix. There will
be several similar patches as illustrated in Figures 1&2, and their
weighted average will be similar to the test patch but the average
won’t be exactly same to the test patch. That difference is the detail
information which is missing in test patch. Let x;,, be the index of
similar patches of the test patch x; and are kept in the set {;. Thus,
the non-local mean can be calculated as:

X; = Z WimXim» 3)

where the weight w;,, depends on the similarity of patches and it
lies within a range of O to 1. This weight is measured as a decreas-
ing function of weighted Euclidean distance [2]

xiox: |2
Wi = —e @
b4
z is the normalizing constant and & controls the decay of the ex-
ponential function which decreases with the weight of Euclidean
distance. The usage of Euclidean distance is logical in this case as
it preserves the order of similarity between pixels in presence of
additive noise.
Once, we have the non-local mean, the differences between the
test patch and the non-local mean can be computed by

dx,- = |x; — Xil. ©)

This dy; is the detail information of the test patch, which will be
sparse coded with the assistance of learned sub-dictionaries. * Now,
the task is to select a sub-dictionary A, for the test patch x;. Since,
M, are the representatives of corresponding dictionaries, the selec-
tion can be done based on simple Euclidean distance between dy,
and p,

ki = argmin [ldy; — il (6)

where k; be the index of the selected dictionary A, for the patch x;.
Next, sparse coefficient for the difference component dy, is com-
puted by solving the following cost function

&, = argmin {lidy, — Acyll} + e} )
d;

and is solved by iterative thresholding algorithm as proposed in [3].
Since, we are selecting a particular sub-dictionary from all the sub-
dictionaries, the computed coefficient vector is happened to be highly
sparse. This coefficient &;, allow us to get back the reconstructed
detail component of the patch by (Alxi = A&, The (Aixi lacks the
slow varying component and can be compensated by adding the
non-local mean X; to produce the super-resolved raw patch

ﬁ,’ =dy + ii. (8)

i

3Note that the detail information in a sub-dictionary is computed by subtracting the
cluster-mean. This is slightly different from the computation of dy, which involves
subtracting the non-local-mean. This difference does not affect the sparse coding sig-
nificantly, but yields a considerable computational advantage in dictionary learning.



Once, all the patches are reconstructed from its LR version, the
entire image can be reconstructed back by

L -l
&~ [Z PfPi) > (%), ©)
i=1 i=1
where L denotes the total number of patches. The eqn. (9) demon-
strates that all the reconstructed patches are kept in the correspond-
ing position of HR image grid as they were in LR image with the
averaged overlapping portions. The reconstructed image should
look similar to the input LR image and to make sure this fact, we
minimize the following cost function

% = arg min |ly — DHR|[3. (10
X

In order to achieve better localization, the eqn. (10) is further regu-

larized by an effective edge preserving constraint as proposed in [14].

Here edginess feature has been considered to preserve and is
known to perform better than conventional gradient [16]. This is
generally computed by applying a smoothing operator along one di-
rection and its derivative operator along orthogonal direction. Con-
sidering E, be the operator responsible for extracting the gradient

magnitude e, = /eg + ego, where e is the vertical edge evidence

and ey is the horizontal edge evidence. Thus the eqn. (10) can be
rewritten with the edge preserving constraint as:

% = argmin {ly - DHRI; + BIE,y) - E/(DH&)IE} (1)

The edge preserving constraint minimizes the difference between
edginess information of LR image and that of the down-sampled
version of the reconstructed image. As a result, it will help to
preserve perceptually significant discontinuities present in inten-
sity image as well as range image. Finally, we have the estimated
HR image % and the procedure (Eqns. (3) to (11)) needs to be iter-
ated until convergence for better results. Within each iteration the
sub-dictionary will be selected adaptively.

The pseudo code of the proposed approach is summarized in
Algorithm 1, where S hrink operator is used for solving eqn. (7)
by using iterative shrinkage algorithm as proposed in [3] with the
help of a predefined parameter A and E can be assumed to be the
edge extraction matrix similar to the operator E,. It has to be
noted that, the most inner loop will run for L times, which is the
number of patches. Second inner loop will check for convergence
and the outer loop is optional and can be used to update the sub-
dictionaries. Thus, within every iteration the dictionary selection
will be updated adaptively and once the inner loops are completed,
the dictionary will be retrained. The outcome of this algorithm is
analyzed and compared with the state-of-the-art approaches in the
next section.

4. EXPERIMENTAL RESULTS

We now discuss some experimental results of our proposed ap-
proach. For better clarification, we have divided this section into
two subsections one for SR results of the intensity images and other
for the results of range image.

4.1 SR results of intensity images:

Here we have used some standard intensity images of dimension
256 x 256. According to the LR image formation model (1), these
HR images are first blurred by a 7x7 Gaussian kernel with standard
deviation 1.6 and down-sampled by factor 3. The down-sampling
has been done by leaving 3 pixels in both horizontal and vertical
directions. Thus, the LR images to be super-resolved is of dimen-
sion 56 X 56, which is due to the round-off operation on 256/3.

Algorithm 1: Single Image SR

Data: LR image y
Result: HR image x

1 Initialization:

2 Set initial approximation X = (y) T4

3 Set the regularization parameters A, § and y.
4 Set error threshold e.

5 Main Iteration:

6 fork=1to K do

7 Extract patches x; by x; = P;X from (X) |, ford = 1to s.

8 Apply K-means clustering on all x; and get y,.

9 Apply PCA to each cluster to learn several A.
10 for j =1to N do
11 fori=1to Ldo
12 Search for similar patches X; .
13 Calculate the non-local mean by

i,‘ = Zmeg[ Wi mXim-
14 Compute dy; = [x; — X;.
15 Select a particular Ay for dy, based on eqn. (6).
16 Compute the coefficient vector
&, = Shrink(Ald,,) .
17 Restore the patch &; = A€y, +X;.
18 end
19 Achieve the full image by eqn. (9).
20 R =
%/ +y (DH)" ( y— DHﬁf) +B(EDH)" ( Ey - EDH&-")

21 if [|®/*! — %/])3 < € then
22 ‘ break;
23 else
24 | continue;
25 end
26 end
27 end

This LR image is interpolated by bi-cubic interpolation technique,
which will act as an initial approximation of the unknown HR im-
age. The patch size we have selected in our experiments is 6 X 6.
The same dimensional patches have been extracted from the down-
sampled version of the bi-cubic interpolated image. Here, we con-
sider (0.8)*" as s*, where n = 1,2,3. In this case, the number of
patches for training are on the order of 100,000. The value of K in
K-means clustering is chosen as 68. We require such a high number
in training as lesser number may wash out the differences among
the clusters and on the other hand too large number makes each
cluster less informative. Thus, we classify the set of image patches
into 68 clusters and those clusters with very few patches are being
merged with the neighbor classes.

In searching for similar patches, the weight has been assigned
depending on the similarity to the target patch. This eliminates the
requirement of a threshold for similarity measurement. In the algo-
rithm the values of 4, 8 and y are empirically chosen as 0.08, 0.01
and 7 respectively. The results of the algorithm are being com-
pared with some best performing state-of-the-art single image SR
approaches [4,21,22] qualitatively and quantitatively by their pub-
licly available codes * °. For quantitative comparison we have used

4The source code of 21, 22] is available at
http://www.cs.technion.ac.il/~elad/Various/Single_Image_SR.zip
5The source code of [4] is available at

http://www4.comp.polyu.edu.hk/~cslzhang/ASDS_data/TIP_ASDS_IR.zip



PSNR and SSIM [19], where PSNR measure the quality in error
perspective and SSIM checks for similarity with the original image
and is related to the human visual system. In case of color images,
we consider perceptually important luminance component for SR
and latter the chromatic component is added back to produce the
final HR color image.

We super-resolve the images by up-sampling factor 3 and the
results can be observed in Fig. 3 and Fig. 4 for Butter fly and Plant
image. For both figures, the top left image is the LR image zoomed
up to the same scale of HR image, top middle image is the SR
result of the approach [21] and top right image is the result of [22].
In the bottom row, left one is the result of [4] and the result of our
approach is placed in the middle position and the place of original
image is bottom right.

One can observe that the results of the approaches [21,22] are
smoother in the areas of discontinuities in comparison to our ap-
proach. The performance of the approach [4] is very much closer
to ours. In fact, visually there is little difference between these.
It has to be noted that all these approaches consider external HR
images for training dictionary, whereas our approach doesn’t need
any external images. Still, some differences can be found quantita-
tively in the Table. 1, where the comparison among the approaches
are shown in terms of PSNR and SSIM. One can note the improve-
ments of our approach in comparison to state-of-the-art approaches.

Table 1: Results of SR for Intensity Images (T 3)

Images ‘ Metrics || Bi-cubic | Raw Patch [21] | Scale Up [22] ‘ ASDS [4] | Proposed Approach
Baboon PSNR 19.72 21.60 21.61 20.70 20.71
SSIM 0.3417 0.4363 0.4299 0.4936 0.4951
Barbara PSNR 2291 23.51 23.56 24.36 24.38
SSIM 0.6155 0.6440 0.6451 0.7307 0.7314
Bike PSNR 20.80 21.59 21.54 24.02 24.26
SSIM 0.5756 0.6409 0.6348 0.7733 0.7842
Butterfly PSNR 20.78 21.53 21.52 26.05 27.00
SSIM 0.7173 0.7747 0.7801 0.8703 0.8959
Cameraman | PSNR 21.69 22.12 2213 24.66 24.93
SSIM 0.7025 0.7452 0.7490 0.8079 0.8185
Girl PSNR 29.82 29.89 29.92 33.46 33.55
SSIM 0.7317 0.7424 0.7417 0.8228 0.8238
Hat PSNR 27.20 27.89 27.97 30.47 30.94
SSIM 0.7773 0.8177 0.8214 0.8552 0.8654
Parrot PSNR 25.58 26.10 26.06 29.68 29.95
SSIM 0.8256 0.8439 0.8473 0.9055 0.9098
Peepers PSNR 22.99 23.82 2391 2781 28.19
SSIM 0.7217 0.7631 0.7713 0.8529 0.8598
Plants PSNR 21.76 28.29 28.29 32.84 3341
SSIM 0.7845 0.8163 0.8151 0.9006 0.9092

4.2 SR results of range images:

In this case, we have used range images from the standard Mid-
dlebury dataset [11, 17]. The sizes of HR images are of the order
500 x 400. The database contains images with some missing pixels
i.e. black pixels. In order to avoid false quantitative results, we
filled up those black pixels with its available left nearest neighbor.
These filled up range images are then blurred by the same Gaussian
kernel as is used in case of intensity images and down-sampled by
factors 2 and 4. The sizes of the down-sampled LR images, which
have to be super-resolved are of the order 250 x 200 and 125 x 100
respectively. In case of range image, the number of patches for
training purpose is 250,000. Rest of the parameters for SR are kept

Table 2: Results (RMSE) of SR for Range Images (T 2)

Images || EB[1] | GIF[10] | ATGV [7] | Ours

Aloe 5.58 5.93 5.07 2.87
Baby 3.35 3.27 297 1.66
Cones 441 3.93 3.51 2.20
Plastic 3.01 2.32 222 1.27
Teddy 3.38 3.01 2.67 1.71
Tsukuba 9.92 15.62 11.20 5.24
Venus 1.94 2.72 1.84 0.93

Table 3: Results (RMSE) of SR for Range Images (T 4)

Images || EB[1] | GIF[10] | ATGV [7] | Ours

Aloe 7.46 6.30 5.76 4.10
Baby 4.49 3.55 3.36 2.63
Cones 5.90 4.39 4.00 3.33
Plastic 4.35 2.66 2.31 2.09
Teddy 5.20 3.32 3.08 2.46
Tsukuba 19.97 17.09 27.49 9.37
Venus 2.36 2.79 2.68 1.40

same as in case of intensity image SR.

We super-resolve those LR images by up-sampling factors 2 and
4 and compare our results with the popular range image SR ap-
proaches, which involved requirement of color images [7, 10] and
an example based range image SR approach [1], which doesn’t use
color images but it uses a HR database. For all these approaches
we have used publicly available codes provided by the respective
authors.

The results for up-sampling factor 2 can be observed for the Aloe
image in Fig. 5. Here top left image is the input LR image, top
middle stands for the result of the approach [10], the result of the
approach [7] is placed in top right, bottom left shows the result of
the example based approach [1], the bottom middle displays the
result of our proposed approach and the bottom right is the origi-
nal image. One can clearly examine the results and point out that
our approach produces the best result in comparison to other ap-
proaches, which failed to preserve the edges. As can be seen in
figure that edges are smeared for most of the approaches. This
smearing of edges increase as the up-sampling factor increases and
can be observed for factor 4 in Fig. 6 and 7. It has to be noted that
the sharpness of the results of our approach has come down with in-
creasing factor but still it is able to contain the strong edges intact,
which is not the case with other approaches.

Now, we show some quantitative results of the SR approaches in
terms of root mean square error (RMSE). Here, we do not consider
SSIM in evaluating the image quality, because SSIM is related to
HVS but the range images are not directly perceived by human be-
ings. The RMSE values of the SR results for up-sampling factors
2 and 4 are kept in Tables 2 and 3 respectively. It can be observed,
that for all the cases our proposed approach is performing better
than the state-of-the-art approaches including color image based
approaches.



Figure 3: Comparison of SR approaches for Butter fly image: Top left is the zoomed version of the LR image, top middle is the SR
result of [21], top right is the SR result of [22]. Bottom left represents the SR results of [4], middle one is the result of the proposed

approach and right bottom is the original image.

Figure 4: Comparison of SR approaches for Plant image: Top left is the zoomed version of the LR image, top middle is the SR result
of [21], top right is the SR result of [22]. Bottom left represents the SR results of [4], middle one is the result of the proposed approach

and right bottom is the original image.

5. CONCLUSION

We proposed a single image SR approach that doesn’t need any
external HR image, which is unlike to most other single image SR
approaches. Our approach targeted for both intensity and range im-
ages. We mould the formulation of the approach in sparse represen-
tation framework, where we learn sub-dictionaries from the patches
extracted from the input image across different scales to capture
coarse to fine information. To achieve a good localization we have

considered extracting the detail information based on elegant NL-
mean formulation and have sparse-coded this information. The SR
result is further improved by regularizing with an effective edge
preserving constraint. Thus, the combination of non-local similar-
ity, sparse representation and edge preservation plays the key role in
our approach. We demonstrate the performance of our approach in
case of range and intensity images. The experimental results show
considerable improvement over the state-of-the-art approaches.



Figure 5: Comparison of SR approaches for Aloe image (scale-2): Top left is the zoomed version of the LR image, top middle is the
SR result of [10], top right is the SR result of [7]. Bottom left represents the SR results of [1], middle one is the result of the proposed
approach and right bottom is the original image.

Figure 6: Comparison of SR approaches for Cones image (scale-4): Top left is the zoomed version of the LR image, top middle is the
SR result of [10], top right is the SR result of [7]. Bottom left represents the SR results of [1], middle one is the result of the proposed
approach and right bottom is the original image.
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