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ABSTRACT

Image denoising is a classical and fundamental problem in
image processing community. An important challenge in im-
age denoising is to preserve image details while removing
noise. However, most of the approaches depend on smooth-
ness assumption of natural images to produce results with
smeared edges, hence, degrading the quality. To address this
concern, we propose two constraints to better preserve the
edges while denoising the image via the sparse representa-
tion framework. The first constraint attempts to preserve the
edges at the coarser scales of the image as the level of noise
drop dramatically at coarser scales. Different levels of scales
are considered to account different strength of noise. The sec-
ond constraint prevents transitional smoothing by preserving
the edges of intermediate image estimates across iterations.
Experimental results demonstrate the ability of the proposed
approach in removing noise while preserving edges in com-
parison to the state-of-the art approaches.

Index Terms— Image denoising, Down-sampling, Edge-
preservation, Sparse-representation.

1. INTRODUCTION

Ever-increasing demand of visual information often requires
high quality images of scenes. However, sensor imperfection,
poor illumination, communication errors etc. may introduce
noise in the captured image. Thus, it is necessary to restore
the noisy image. If noise is assumed to be additive then the
following mathematical model can be used:

y = x + n, (1)

where, x ∈ <M is the original scene which is degraded by ad-
ditive zero mean white Gaussian noise n ∈ <M with standard
deviation σ to produce the degraded (noisy) image y ∈ <M .
Image denoising aims to recover an estimate of x from y,
which is as close as possible to the original image. It is an
example of classical inverse problem and can be solved by
regularizing the same with some prior knowledge as

x̂ = arg min
x

{
||y − x||22 + λ R(x)

}
, (2)

where, R(x) is regularization term used to incorporate prior
knowledge.

Most of the image denoising algorithms are centered
around modeling the prior information R(x) implicitly or
explicitly. Majority of the approaches perform denoising
based on the assumption that the natural image contains
mostly smoother regions. Implicitly, the smoothness prior
is incorporated by smoothing the entire image by means
of convolving the noisy image with Gaussian kernel [1] or
by smoothing within a boundary rather than across bound-
ary [2]. On the other hand, prior information is incorporated
explicitly as R(x) in the form of total-variation (TV) [3],
Gaussian mixture model (GMM) [4], non-local self simi-
larity (NLSS) [1, 5–7], sparsity [8–10] etc. While most of
the mentioned approaches yield good results, there is always
a trade-off between suppression of noise and smearing of
edges, which is perceptually important aspect of any image.

In this paper, we address the problem of image denois-
ing in a novel representation of the sparse coding framework,
by considering two effects of multiscale processing and edgi-
ness representation [11] on noise reduction and edge preser-
vation. We initialize our model with the Nonlocally Central-
ized Sparse Representation (NCSR) approach [10], over and
above which, we incorporate constraints to take into account
the above mentioned effects.

The first constraint attempts to minimize the difference
between the edges of the denoised image (potential solu-
tion) and the noisy image at coarser scale. It is based on
the observation, as well as supported in literature [12], that
levels of noise drop significantly at coarser image scales and
strong edges are less affected. Thus, it is logical to make
edges of the noisy image consistent with the denoised one at
the coarser scale. The coarser image scale is generated by
blurring and subsampling the image. However, it is difficult
to come up with a suitable scale factor for down-sampling
because while the level of noise is suppressed better for larger
down-sampling factor, there is some loss of information.
Hence, the proposed approach considers edge preservation at
multiple down-sampling factors.

The second constraint attempts to preserve the edges of
denoised image over different iterations. It has been observed
that denoising algorithm has to iterate few times to reduce



the level of noise efficiently. As the iterations progress the
level of noise comes down but edges also get blurred. Hence,
a constraint is added to preserve the edges of the interme-
diate denoised image at each iteration. It can be seen as a
step to mitigate the transitional smoothing. The robustness of
the proposed approach is demonstrated by testing the perfor-
mance under different strength of noise. Moreover, the pro-
posed constraints can be added with any existing image de-
noising approach. In this paper, the results are demonstrated
with image denoising using the framework of sparse coding.

Hence, the contribution of the paper can be summarized
as: i) As the level of noise is reduced significantly at coarser
scale of noisy image, a constraint is proposed to preserve the
edges of down-sampled denoised image. ii) In order to deal
with different amount of noise, the edge preservation is car-
ried out for different scales. iii) The transitional smoothing is
mitigated by preserving edges of intermediate denoised image
in iterative based denoising approach.

The structure of the remaining paper is depicted as fol-
lows: Section 2 gives a brief background about denoising an
image via sparse representation by eliminating sparse coding
noise, employed in this work. The edges of the denoised im-
age are preserved using two constraints, and are described in
Section 3. The robustness of the proposed approach is mani-
fested in Section 4 through experimental results and the sum-
mary is given in Section 5.

2. IMAGE DENOISING IN SPARSE DOMAIN

Although, our approach can be embedded in any of the itera-
tive denoising algorithms, we have used sparse representation
framework because of its ability to perform better [13–18].
The underlying concept is that an image can be sparsely repre-
sented with the help of a dictionary matrix i.e. x = Ac, where
c is the sparse coefficient vector that has to be achieved with
the help of the dictionary matrix A as

ĉ = arg min
c

{
||y − Ac||22 + λ ||c||1

}
. (3)

Once, ĉ is computed, the image x can be restored as x̂ = Aĉ.
Here, the denoising of images works based on the assump-
tion that the noisy image as well as the unknown clean im-
age share the same sparse coefficient vector. Nevertheless,
the assumption may not be logical as sparse coding the clean
image or its noisy version may not produce the same coef-
ficient vector. Let’s ĉx and ĉy be the coefficient vectors for
clean and the noisy version of the image, respectively. One
requires to minimize the difference between ĉx and ĉy, which
is termed as sparse coding noise in literature [10]. In prac-
tice ĉxi

1 is not available and approximated using ψi, which
is sparse coefficient vector computed from non-local mean of

1ĉxi is the sparse coefficient vector of patch xi, which is the ith patch
extracted from the image x as xi = Pix.

similar patches. Thus, the sparse coding noise can be reduced
as

ĉy = arg min
c

||y − Ac||22 + λ
∑

i

||ci − ψi||1

 . (4)

The resultant ĉy is now very close to the sparse vector of un-
known image x, and can be multiplied with the dictionary
matrix to achieve an approximation of denoised image as x̂ =

Aĉy.
In this work, we have used the same dictionary learning

strategy as mentioned in [10], where patches are extracted
from the input image, and cluster them into K groups using
K-means clustering method. The reason being that different
clusters contain different variations of image structures, and
can effectively represent natural image than an over-complete
dictionary. Each of the K clusters contains similar patches,
hence, we do not have to learn over-complete dictionaries for
each of them. Instead, a compact dictionary is learned for
each of the cluster using principal component analysis (PCA)
approach. For decades, PCA has been used to de-correlate or
to reduce dimension of signal, and is very successful in image
restoration work [10, 14, 15]. Hence, PCA can be effectively
used to learn compact dictionary. Moreover, a compact dic-
tionary will reduce computational cost, in comparison to an
over-complete dictionary.

3. PROPOSED CONSTRAINTS FOR EDGE
PRESERVATION

In the following sub-sections, we discuss the proposed two
constraints for preserving edges in sparse coding based image
denoising algorithm. Here, both the constraints are incorpo-
rated within each iteration of image denoising algorithm.

3.1. Preserving edges at coarser scales

Here, we attempt to preserve the edginess feature [11], which
is the magnitude of gradient of image (computation will be
explained later), between the noisy image and the denoised
image at coarser scale. The reason for using down-sampled
or coarser scale of image instead of noisy image at the same
scale is that the coarser version of the noisy image contains
lesser noise [12] and can produce a less noisy edges as com-
pared to the noisy image. This is, possibly, because of the
fact that down-sampling operation involves some filtering
(smoothing) of the image, and hence a reduction in noise,
which is typically uncorrelated.

The behavior of lesser noise at coarser scale can be ver-
ified in Fig. 1. One can observe that the zoomed version of
the patch extracted from the edginess feature of the coarser
scale noisy image (Fig. 1 (c)) is equivalent to the same of the
coarser scale clean image (Fig. 1 (b)). However, the patch ex-
tracted from the edginess feature of the noisy cameraman im-
age is quite different from rest of the patches. Since, the patch



Fig. 1. Demonstration of “Down-sampling has denoising effect” for cam-
eraman image: (a) the edginess feature of the clean image, (b) the edginess
feature of the down-sampled (by factor 3) cameraman image, (c) the edginess
feature of the down-sampled (by factor 3) noisy cameraman image (noise
level σ = 50), and (d) the edginess feature of the noisy cameraman image.

from (Fig. 1 (a)) is quite similar to the patch from (Fig. 1 (c)),
one can judge that significant amount of noise can be reduced
by going to coarser scale of the noisy image. Thus, it is logi-
cal to preserve edges in coarser scale of the image instead of
the original scale.

The process of incorporating the constraint is depicted in
Fig. 2. The noisy image is first denoised via an existing de-

Fig. 2. Block diagram representation of preserving edges at coarser scales.

noising algorithm (here NCSR [10]). The denoised image is
down-sampled along with the input noisy image. Edginess
features are extracted from both the down-sampled versions
of noisy image as well as denoised image by 1-D processing
of image [11]. A large deviation between the edginess fea-
tures of the down-sampled images will cause the system to
iterate until convergence.

In the proposed approach, edginess feature [11] is cho-
sen and computed using 1-D processing of images, which
involves initial smoothing of image along one direction and
derivative operation along orthogonal direction. This opera-
tion is repeated along two orthogonal directions and magni-
tude of the edges are computed using the same. Note that the
computation of edginess feature does not involve any thresh-
olding.

Let’s assume that yl and x̂l are produced by blurring (H)
and down-sampling (D) the images y and x̂, respectively i.e.,
yl = DHy & x̂l = DHx̂ = DHAĉ, and E is the matrix respon-
sible for extraction of edginess feature from the image. Here,
the constraint ||Eyl − EDHAĉ||22 ≤ ε is added with the cost
function mentioned in Eq. (4) as a regularization term

ĉy = arg min
c

||y − Ac||22 + λ
∑

i

||ci − ψi||1

+ β ||Eyl − EDHAĉ||22
}
, (5)

where, β is the regularization parameter. The last term of the
equation enforces the edges of the noisy image to coincide
with the edges of the denoised one at coarser scale.

3.1.1. Multi-scale edge preservation

It is important to decide a suitable down-sampling factor (D)
because higher down-sampling factor can reduce noise dras-
tically but, at the same time the edges become inconspicu-
ous. This situation is addressed by preserving edge at differ-
ent down-sampling factors with different values of β. Hence,
the last term of eqn. (5) can be written as

β ||Eyl − EDHAĉ||22 =
∑

s

βs ||E (y) ↓ds − E (Aĉ) ↓ds ||
2
2, (6)

where, (·) ↓ds is the down-sampling operation by factor ds,
which is equivalent to multiplication with DH. Here, s =

{1, 2, 3} and βs = 1
σds

(σ = noise level). Thus, β will be
assigned a lesser value with increasing either noise level or
down-sampling factor. This is because, at very higher down-
sampling factor or at higher strength of noise, the edges are
less likely to be preserved. Hence, it is sensible to assign
lesser weight to the edge preserving constraint.

3.2. Preventing transitional smoothing

In this case, the transitional smoothing is prevented by pre-
serving the edge of intermediate denoising result at each iter-
ation. The motivation behind such constraint is that most of
the denoising algorithms remove noise iteratively. As a result,
the image details such as edges, corners are getting blurred at
each iteration, though the suppression of noise is improving.
Here, the image denoising is performed by reducing sparse
coding noise, which involves an approximation of ψi using
non-local mean of the similar patches within each iteration.
Since, non-local mean is the weighted average of the non-
local similar patches, employing the mean to derive ψi and
minimizing the sparse coding noise by eq. (4) may produce a
smoother result.

In order to prevent transitional smoothing (above dis-
cussed), the second constraint is followed as shown schemat-
ically in Fig. 3, where denoising algorithm removes noise
iteratively. Edginess features are extracted from the inter-

Fig. 3. Block diagram for preventing transitional smoothing

mediate resultant images and are examined for preservation.
A large difference between the two makes the system iter-
ate until the difference comes down within a threshold limit.
The process is addressed mathematically by incorporating



the constraint ||EAĉ j − EAĉ j−1||22 ≤ ξ in eq. (5) to preserve
the edges of the intermediate results. The constraint can be
incorporated with a regularization parameter γ as

ĉy = arg min
c

||y − Ac||22 + λ
∑

i

||ci − ψi||1

+ β ||Eyl − EDHAĉ||22 + γ ||EAĉ j − EAĉ j−1||22

}
.(7)

The eq. (7) can be solved by iterative thresholding algo-
rithm [19]. Here, the last term attempts that the edginess
feature of the intermediate result of jth iteration is follow-
ing the same of the intermediate result of ( j − 1)th iteration.
Thus, transitional smoothing can be prevented and a better
result is expected. The algorithm of the proposed approach is
depicted in Algorithm 1. Here, Pi is used to extract patches

Algorithm 1: Proposed approach of image denoising
Data: Noisy image y
Result: Denoised image x̂

1 Initialization:
2 Set initial approximation x̂ = y
3 Set the regularization parameters λ, α, β and γ.

4 Main Iteration:
5 for j = 1 to N ; // N = No. of iterations
6 do
7 Learn sub-dictionaries A from x̂ by extracting patches,

clustering them and applying principal component analysis [10].
8 x̂( j+1/4) = x̂( j) + α

(
y − x( j)

)
9 Extract Patches x̂( j+1/4)

i = Pix̂( j+1/4)

10 for i = 1 to L ; // L = No. of Patches
11 do
12 Compute ĉ( j+1/4)

i = AT x̂( j+1/4)
i

13 Calculate ψi =
∑

s∈Θi
1
z exp

(
−
||x̂( j+1/4)

i −x̂( j+1/4)
i,s ||22

h

)
ĉ( j+1/4)

i

14 Update ĉ( j+2/4)
i = S hrinkλ

(
ĉ( j+1/4)

i − ψi
)

+ ψi

15 Restore a patch x̂( j+2/4)
i = Aĉ( j+2/4)

i
16 end
17 Achieve the full image

x̂( j+2/4) ≈
(∑L

i=1 PT
i Pi

)−1 ∑L
i=1

(
PT

i x̂( j+2/4)
i

)
18 Preserving edges at coarser scales (Including 1st constraint)

x̂( j+3/4) = x̂( j+2/4) + β ( EDH)T
(

EDHy − EDHx̂( j+2/4)
)

19 Preventing transitional smoothing (Including 2nd constraint)
x̂( j+1) = x̂( j+3/4) + γ ET

(
Ex̂( j+3/4) − Ex̂( j)

)
20 if ||x̂ j+1 − x̂ j ||22 < ε then
21 break ; // Breaks the loop and produce the result x̂ j+1

22 else
23 continue;
24 end
25 end

from image i.e. xi = Pix. S hrink is a soft thresholding func-
tion, which is used to compute the sparse coefficient vector.
Each term of eqn. (7) is solved in sequential manner to pro-
duce x̂( j+1/4), x̂( j+2/4), x̂( j+3/4) & x̂( j+1), where x̂( j+1) is the final
result.

4. EXPERIMENTAL RESULTS

The performance of the proposed approach is compared with
state-of-the-art approaches [8, 10, 20, 21] using standard im-
ages. The images are first added with additive white Gaus-
sian noise of standard deviations σ = 10, 20, 50, 100 sep-
arately to generate the noisy versions of the images. Here,
7 × 7 patches are extracted from the noisy image for fur-
ther processing. The denoised results are compared quali-
tatively as well as quantitatively. In quantitative evaluation,
peak signal-to-noise ratio (PSNR) and structural similarity in-
dex (SSIM) [22] are chosen in order to evaluate the results in
error perspective as well as similarity measurement. The pro-
posed approach involves parameters λ, α, β and γ. λ is chosen
adaptively to get the best results, as is done in [10]. Depend-
ing on the scale-factor (d) and the strength of noise (σ), we
have chosen βs = 1

σds
, where, s = {1, 2, 3}. α and γ are em-

pirically chosen as 0.02 and 5, and are kept same for all the
target images.

The quantitative results are shown in Table 1, where
PSNR and SSIM values are reported on top and bottom in
each row, respectively. The values with bold fonts repre-
sent our best case. One can note that the proposed approach
is outperforming the approaches like anisotropic TV [20],
EPLL [21], K-SVD denoising [8]. In sparsity based de-
noising, the proposed approach and the NCSR approach are
producing better than the K-SVD dictionary based denoising.
This also proves that multiple compact sub-dictionaries are
better than a single over-complete dictionary. However, the
proposed approach is producing comparable results with the
approach NCSR denoising [10]. This is because, the pro-
posed approach focuses more on preserving the dominant
(perceptually important) edges, and in turn the weak edges
may be diminished with an increasing strength of noise.

Qualitative comparison of the proposed approach along
with the existing approaches for two images peppers and
f ingerprint are shown in Figs. 4 & 5, respectively. One can
observe that the anisotropic TV (ATV) is not able to remove
substantial amount of noise. However, the K-SVD denois-
ing approach is able to remove noise but, can not retain the
edges efficiently. For f ingerprint image, the ridges are over-
lapped with each other at some places. On the other hand,
the NCSR denoising approach is able produce results of con-
siderable quality. Nevertheless, at some areas (marked by
black colored rectangular box) the NCSR denoising approach
is not able to maintain the edges appropriately. Whereas, the
proposed approach is able to remove noise while preserving
edges, in both the examples. One can note in case of peppers
image that the wave like pattern within black colored box are
properly maintained by the proposed approach as compared
to the existing approaches. Similarly, one can closely observe
the regions within the black colored boxes for the f ingerprint
image to point out that the ridges are sharply preserved by the
proposed approach as compared to other approaches. From



Table 1. Quantitative Comparison of Results Produced by Denoising Approaches via PSNR (top) & SSIM (bottom)
Approaches→ ATV [20] EPLL [21] K-SVD [8] NCSR [10] Proposed Approach

PPPPPPPPImages
σ

10 20 50 100 10 20 50 100 10 20 50 100 10 20 50 100 10 20 50 100

Lena 30.22 29.86 23.02 12.47 35.56 32.60 28.42 25.30 32.28 31.23 27.78 24.49 35.81 32.92 28.89 25.66 35.85 32.96 28.93 25.64

0.8222 0.8115 0.4057 0.0934 0.9126 0.8684 0.7713 0.6573 0.8608 0.8414 0.7603 0.6447 0.9149 0.8760 0.8026 0.7257 0.9166 0.8783 0.8061 0.7176

Barbara 24.83 24.79 21.61 12.37 33.59 29.75 24.83 22.10 30.59 29.42 25.43 21.87 34.98 31.72 27.10 23.30 34.96 31.72 27.05 23.32

0.7057 0.7030 0.4407 0.1421 0.9319 0.8744 0.7031 0.5441 0.8757 0.8471 0.7128 0.5335 0.9411 0.9045 0.7962 0.6498 0.9417 0.9048 0.7923 0.6455

Couple 27.68 27.49 22.46 12.43 33.78 30.47 26.22 23.34 29.89 28.73 25.25 22.61 33.94 30.56 26.21 23.22 33.98 30.58 26.12 23.11

0.7350 0.7316 0.4536 0.1270 0.9077 0.8364 0.6883 0.5380 0.8110 0.7739 0.6318 0.5012 0.9064 0.8363 0.6925 0.5554 0.9084 0.8394 0.6927 0.5532

Fingerprint 24.56 24.34 21.08 12.36 32.13 28.29 23.58 19.80 28.30 27.05 23.07 18.33 32.70 28.99 24.53 21.29 32.65 28.96 24.50 21.34

0.8211 0.8185 0.7108 0.3289 0.9678 0.9262 0.8022 0.5877 0.9188 0.8920 0.7456 0.4406 0.9704 0.9327 0.8260 0.6816 0.9698 0.9312 0.8241 0.6840

Hill 28.55 28.36 22.78 12.45 33.49 30.47 26.91 24.37 30.04 29.08 26.25 24.01 33.69 30.61 26.86 24.13 33.69 30.65 26.91 24.31

0.7131 0.7097 0.4214 0.0973 0.8859 0.7983 0.6597 0.5381 0.7715 0.7349 0.6193 0.5269 0.8864 0.8013 0.6586 0.5541 0.8869 0.8036 0.6611 0.5561

Man 28.43 28.22 22.71 12.44 33.90 30.53 26.63 23.96 29.97 28.93 26.03 23.40 33.96 30.52 26.60 23.97 34.01 30.56 26.61 23.91

0.7542 0.7498 0.4332 0.1093 0.9093 0.8347 0.6943 0.5690 0.8083 0.7730 0.6628 0.5493 0.9069 0.8311 0.6976 0.6022 0.9086 0.8325 0.6985 0.5975

Peppers 28.89 28.43 22.38 12.37 34.51 31.18 26.60 22.93 30.57 29.43 26.08 21.69 34.66 31.26 26.53 22.64 34.65 31.24 26.63 22.78

0.8450 0.8296 0.4698 0.1414 0.9273 0.8854 0.7847 0.6595 0.8700 0.8491 0.7662 0.6118 0.9262 0.8861 0.7969 0.6958 0.9262 0.8847 0.7958 0.6895

Average 27.59 27.35 22.29 12.41 33.85 30.47 26.17 23.11 30.23 29.12 25.70 22.34 34.25 30.94 26.67 23.45 34.26 30.95 26.68 23.49

0.7709 0.7648 0.4765 0.1484 0.9204 0.8605 0.7291 0.5848 0.8452 0.8159 0.6998 0.5440 0.9217 0.8668 0.7529 0.6378 0.9226 0.8678 0.7529 0.6348

Fig. 4. Comparison of denoising results for noisy Pepper image (σ =

50): (a) The noisy image (PSNR=14.12), (b) the result of ATV [20]
(PSNR=22.38), (c) the result of K-SVD denoising [8] (PSNR=26.08), (d)
the result of NCSR [10] (PSNR=26.53), (e) the result of the proposed ap-
proach (PSNR=26.63), and (f) the ground truth image.

the above observations, it can be inferred that the proposed
approach is able to maintain the strong edges while removing
noise as compared to the state-of-the-art approaches.

5. SUMMARY

In this paper, we have attempted to preserve edges of im-
ages while removing noise using two constraints. The first
constraint aims to make edges of the noisy image consistent
with the denoised image at the coarser scale. It has been done
based on the observation that the strong edges are less effected
while the level of noise comes down drastically at the coarser
scale. The approach is made more robust by preserving the
edges at different down-sampling factors to account the dif-

Fig. 5. Comparison of denoising results for noisy fingerprint image
(σ = 100): (a) The noisy image (PSNR=8.12), (b) the result of ATV [20]
(PSNR=12.36), (c) the result of K-SVD denoising [8] (PSNR=18.33), (d)
the result of NCSR [10] (PSNR=21.29), (e) the result of the proposed ap-
proach (PSNR=21.34), and (f) the ground truth image.

ferent strength of noises. The second constraint has been in-
cluded by preserving edges of the intermediate results of each
iteration in order to prevent transitional smoothing of images.
The proposed constraints can be applied to any denoising ap-
proach to preserve strong edges while removing noise.
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