A Glimpse of Digital Image Processing

“One picture is worth more than thousands words”

Srimanta Mandal
PhD Scholar
Indian Institute of Technology Mandi
Outline

- First part: Brief overview of fundamental steps in digital image processing.
- Second part: Image restoration.
Part: I

Overview of digital image processing
What is digital image processing (DIP)?

- Let’s know the meaning of the string “Digital Image Processing”.
- The word ‘Digital’ is more meaningful when it is associated with other words such as clock, signal, electronics, signature, camera, etc.
- Here signal is our interest.
What is a signal?

- Signal is something which carries some information.

- It may be of different types:
 - Continuous time
 - Discrete time
 - Digital
Digital from continuous

(a) Continuous, (b) Discrete time and (c) Digital signal.
Image – A signal?

- No need to mention that image contains significant information.

- So image is a signal and thus “digital image” is valid.
What is an image?

- Generally it can be defined as a pictorial representation of a scene.
- A 2-D function $f(x,y)$.
- x and y are spatial (plane) coordinates.
- The amplitude of f at any pair of coordinates (x, y) is called the intensity or gray level of the image at that point.
What is digital image?

- When x, y, and the intensity values of f are all finite, discrete quantities, we call the image a digital image.

- Representation of a two-dimensional image as a finite set of digital values, called picture elements or pixels.

- The field of digital image processing refers to processing digital images by means of a digital computer.
More on pixels

- Pixel values typically represent gray levels, colors, heights, opacities etc.

- **Remember** digitization implies that a digital image is an approximation of a real scene.
Image Representation
Contd..

- Common image formats include:
 - 1 sample per point (B&W or Grayscale)
 - 3 samples per point (Red, Green, and Blue)
 - 4 samples per point (Red, Green, Blue, and “Alpha”, a.k.a. Opacity)
For k-bit image of dimension M*N the space requirement is

\[b = M \times N \times k \]
Image Processing and related fields

Image Processing

Artificial Intelligence

Computer Vision

Machine Learning

Statistics

Information Theory

Image Coding

Visual Perception

Display Technology

Computer Graphics

Optical Engineering

Robotics

Inspection

Photogrammetry

M-d Signal Processing

Imaging
The continuum from image processing to computer vision can be broken up into low-, mid- and high-level processes.

<table>
<thead>
<tr>
<th>Low Level Process</th>
<th>Mid Level Process</th>
<th>High Level Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: Image</td>
<td>Input: Image</td>
<td>Input: Attributes</td>
</tr>
<tr>
<td>Output: Image</td>
<td>Output: Attributes</td>
<td>Output: Understanding</td>
</tr>
<tr>
<td>Examples: Noise removal, image sharpening</td>
<td>Examples: Object recognition, segmentation</td>
<td>Examples: Scene understanding, autonomous navigation</td>
</tr>
</tbody>
</table>
History of DIP

- **Early 1920s**: One of the first applications of digital imaging was in the newspaper industry.

- Images were transferred by submarine cable between London and New York

- The Bartlane cable picture transmission service

- Pictures were coded for cable transfer and reconstructed at the receiving end on a telegraph printer
History contd..

- **Mid to late 1920s:** Improvements to the Bartlane system resulted in higher quality images
- New reproduction processes based on photographic techniques
- Increased number of tones in reproduced images
History contd..

- **1960s**: Improvements in computing technology and the onset of the space race led to a surge of work in digital image processing.

- **1964**: Computers used to improve the quality of images of the moon taken by the *Ranger 7* probe.

- Such techniques were used in other space missions including the Apollo landings.

A picture of the moon taken by the *Ranger 7* probe minutes before landing.
History contd..

- **1970s:** Digital image processing begins to be used in medical applications

- **1979:** Sir Godfrey N. Hounsfield & Prof. Allan M. Cormack share the Nobel Prize in medicine for the invention of tomography, the technology behind Computerized Axial Tomography (CAT) scans

![Typical head slice CAT image](image)
History contd..

- **1980s - Today**: The use of digital image processing techniques has exploded and they are now used for all kinds of tasks in all kinds of areas
 - Image enhancement & restoration
 - Artistic effects
 - Medical visualization
 - Industrial inspection
 - Law enforcement
 - Human computer interfaces
Why do we process images?

- Acquire an image
 - Correct aperture and color balance
 - Reconstruct image from projections: Panoramic view
- Facilitate picture storage and transmission
 - Send an image from space
 - Efficiently store an image in a digital camera
- Enhance and restore images
 - Touch up personal photos
 - Visibility of images in navigation
- Extract information from images
 - Object/Character recognition
Applications

- Biometric:
Generalized biometric system

Pre-processing → Feature Extractor → Template Generator → Matcher

Sensor → Stored Templates → Enrollment

Test → Application Device
Applications

- Text analysis: Archiving the data
- Satellite image
 - Forest management: Forest stock
 - Weather forecasting
 - Road map detection
- Forensic applications and many more.
Examples: Image Enhancement

One of the most common uses of DIP techniques: improve quality, remove noise etc.
Examples: The Hubble Telescope

Launched in 1990 the Hubble telescope can take images of very distant objects. However, an incorrectly made mirror made many of Hubble’s images useless. Image processing techniques were used to fix this.
Examples: Artistic Effects

Artistic effects are used to make images more visually appealing, to add special effects and to make composite images.
Examples: Medicine

Take slice from MRI scan of canine heart, and find boundaries between types of tissue

– Image with gray levels representing tissue density

– Use a suitable filter to highlight edges

![Original MRI Image of a Dog Heart](image1.png)

![Edge Detection Image](image2.png)
Example: GIS

Geographic Information Systems
– Digital image processing techniques are used extensively to manipulate satellite imagery
– Terrain classification
– Meteorology
GIS: contd.

Night-Time Lights of the World data set

– Global inventory of human settlement
– Not hard to imagine the kind of analysis that might be done using this data
Industrial Inspection

Human operators are expensive, slow and unreliable
Make machines do the job instead
Industrial vision systems are used in all kinds of industries
Can we trust them?
Examples: PCB Inspection

Printed Circuit Board (PCB) inspection

– Machine inspection is used to determine that all components are present and that all solder joints are acceptable
– Both conventional imaging and x-ray imaging
Examples: Law Enforcement

Image processing techniques are used extensively by law enforcers

- Number plate recognition for speed cameras/automated toll systems
- Fingerprint recognition
- Enhancement of CCTV images
Examples: HCI

Try to make human computer interfaces more natural
 – Face recognition
 – Gesture recognition

Does anyone remember the user interface from “Minority Report”?

These tasks can be extremely difficult
The main stages of DIP

- Image Acquisition
- Image Enhancement
- Image Restoration
- Morphological Processing
- Segmentation
- Representation & Description
- Object Recognition
- Problem Domain
- Colour Image Processing
- Image Compression
- Representation & Description
- Object Recognition
- Problem Domain
Key Stages in Digital Image Processing:

Image Acquisition

- Image Enhancement
- Image Acquisition

Problem Domain

Image Restoration

Morphological Processing

Segmentation

Representation & Description

Object Recognition

Colour Image Processing

Image Compression
Key Stages in Digital Image Processing: Image Enhancement

- Image Enhancement
- Image Acquisition
- Problem Domain
- Image Restoration
- Morphological Processing
- Segmentation
- Representation & Description
- Object Recognition
- Colour Image Processing
- Image Compression
Key Stages in Digital Image Processing: Image Restoration
Key Stages in Digital Image Processing: Morphological Processing

- Image Acquisition
- Image Restoration
- Morphological Processing
- Segmentation
- Representation & Description
- Object Recognition
- Colour Image Processing
- Image Compression

Problem Domain

- Image Enhancement
- Image Acquisition
Key Stages in Digital Image Processing: Segmentation

- Image Acquisition
- Image Enhancement
- Image Restoration
- Morphological Processing
- Segmentation
- Representation & Description
- Object Recognition
- Colour Image Processing
- Image Compression
Key Stages in Digital Image Processing: Representation & Description

- Image Acquisition
- Image Enhancement
- Image Restoration
- Morphological Processing
- Segmentation
- Representation & Description
- Colour Image Processing
- Image Compression
- Object Recognition

Problem Domain
Key Stages in Digital Image Processing: Object Recognition

- Image Acquisition
- Image Enhancement
- Image Restoration
- Morphological Processing
- Segmentation
- Representation & Description
- Object Recognition
- Colour Image Processing
- Image Compression

Problem Domain
Key Stages in Digital Image Processing: Colour Image Processing

- Image Acquisition
- Image Enhancement
- Image Restoration
- Morphological Processing
- Segmentation
- Representation & Description
- Object Recognition
- Colour Image Processing
- Image Compression
Part: II

Image Restoration
Image restoration vs. Image enhancement

- Image restoration: Objective is to restore the original image from the degraded image.

- Image enhancement: Objective is to manipulate an image to take advantage of psychophysical aspect of human visual system.
An illustration of image restoration
The modeling of the problem
The applications of image restoration

- Processing of astronomy images
- Processing of images degraded due to bad weather
- Medical image processing
- Processing surveillance video tape
Noise model
Noise model: Visualization

- Lets construct a test pattern to illustrate different noise models
Noise Model Contd..
Noise Model Contd..
Restoration by spatial filtering

- Mean filters
 - Arithmetic mean filter
 - Geometric mean filter
 - Contraharmonic mean filter

- Order statistic filters
 - Median Filter
 - Max and Min filter
 - Mid point Filter

- Noise removal by frequency domain filters
Arithmetic Mean Filter

- This is the simplest of the mean filters

\[\hat{f}(x, y) = \frac{1}{mn} \sum_{(s, t) \in S_{xy}} g(s, t) \]
Geometric Mean Filter

- It performs better than the AM filter.

\[
\hat{f}(x, y) = \left[\prod_{(s, t) \in S_{xy}} g(s, t) \right]^{\frac{1}{mn}}
\]
Results

FIGURE
(a) X-ray image.
(b) Image corrupted by additive Gaussian noise. (c) Result of filtering with an arithmetic mean filter of size 3×3. (d) Result of filtering with a geometric mean filter of the same size.
(Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)
Contraharmonic mean filter

- It restores image based on the expression

\[\hat{f}(x, y) = \frac{\sum_{(s, t) \in S_{xy}} g(s, t)^{Q+1}}{\sum_{(s, t) \in S_{xy}} g(s, t)^Q} \]

- For Q>0, it eliminates pepper noise
- For Q<0, it eliminates salt noise
- For Q=0, it becomes arithmetic mean filter
Results

FIGURE
(a) Image corrupted by pepper noise with a probability of 0.1. (b) Image corrupted by salt noise with the same probability. (c) Result of filtering (a) with a 3×3 contrast-harmonic filter of order 1.5. (d) Result of filtering (b) with $Q = -1.5$.
Median Filter

- Replaces the value of a pixel by the median of the intensity levels in the neighborhood of that pixel

\[\hat{f}(x, y) = \text{median}\{g(s, t)\} \quad (x, t) \in S_{xy} \]

- Median filters are practically effective in the presence of both bi-polar and unipolar impulse noise.
Results

(a) Image corrupted by salt-and-pepper noise with probabilities $P_a = P_b = 0.1$.
(b) Result of one pass with a median filter of size 3×3.
(c) Result of processing (b) with this filter.
(d) Result of processing (c) with the same filter.
Max, Min and Midpoint Filters

- Pepper noise can be reduced by max filter

\[\hat{f}(x, y) = \max_{(s, t) \in S_y} \{g(s, t)\} \]

- Salt noise can be reduced by min filter

\[\hat{f}(x, y) = \min_{(s, t) \in S_y} \{g(s, t)\} \]

- Midpoint filter computes the midpoint between max and in values in the area encompasses by the filter:

\[\hat{f}(x, y) = \frac{1}{2} \left[\max_{(s, t) \in S_y} \{g(s, t)\} + \min_{(s, t) \in S_y} \{g(s, t)\} \right] \]
Results

![Figure 5.8(a)](image1) ![Figure 5.8(b)](image2)

Figure

(a) Result of filtering Fig. 5.8(a) with a max filter of size 3 x 3. (b) Result of filtering 5.8(b) with a min filter of the same size.
Frequency domain filtering

- Band Reject filters

From left to right, perspective plots of ideal Butterworth (of order 1), and Gaussian bandreject filters.
Results:

(a) Image corrupted by sinusoidal noise.
(b) Spectrum of (a).
(c) Butterworth bandreject filter (white represents 1).
(d) Result of filtering. (Original image courtesy of NASA.)
The degradation-restoration model
Estimation of Degradation Function

- Estimation by image observation
- Estimation by experimentation
- Estimation by modeling
Estimation by image observation

- Looking for an area, in which signal content is strong.
- Process that area to make it as clean as possible.
- Let the observed part is $g_s(x,y)$ and let the processed part is $f^*_s(x,y)$.

$$H_s(u,v) = \frac{G_s(u,v)}{\hat{F}_s(u,v)}$$

- Complete degradation function $H(u,v)$ can be deduced.
Estimation by experimentation

- If equipment similar to the equipment used to capture the degraded image, it is possible to estimate the degradation function.
- Manipulate some of the settings of your image capturing device to capture an image, which is degraded as the observed one.
- Using same system settings capture the impulse response, which will be constant value \(A \) in frequency domain.

\[
H(u, v) = \frac{G(u, v)}{A}
\]
Contd..
Estimation by modeling

- Model can take into account environmental conditions that cause degradations.
- Hufnagel and Stanley [1964] proposed a degradation model based on the physical characteristics of atmospheric turbulence. This model has the form:

\[H(u, v) = e^{-k(u^2 + v^2)^{5/6}} \]
Illustration of the atmospheric turbulence model.
(a) Negligible turbulence.
(b) Severe turbulence, $k = 0.0025$.
(c) Mild turbulence, $k = 0.001$.
(d) Low turbulence, $k = 0.00025$.
(Original image courtesy of NASA.)
Approaches to remove degradation

- Inverse filtering
- Wiener filtering
- Least square error filtering and many more…
Inverse filtering

- Once we have the degradation function $H(u,v)$, we can restore the image by

$$\hat{F}(u, v) = \frac{G(u, v)}{H(u, v)}$$

$$\hat{F}(u, v) = F(u, v) + \frac{N(u, v)}{H(u, v)}$$

- It will be a problem when $H(u,v)$ is very small.
Results
Weiner filtering

- Here we try to minimize the square error

\[e^2 = E\{(f - \hat{f})^2\} \]

- The solution is

\[
\hat{F}(u, v) = \left[\frac{H^*(u, v)S_f(u, v)}{S_f(u, v)|H(u, v)|^2 + S_\eta(u, v)} \right] G(u, v)
\]

\[
= \left[\frac{H^*(u, v)}{|H(u, v)|^2 + S_\eta(u, v)/S_f(u, v)} \right] G(u, v)
\]

\[
= \left[\frac{1}{H(u, v)} \frac{|H(u, v)|^2}{|H(u, v)|^2 + S_\eta(u, v)/S_f(u, v)} \right] G(u, v)
\]
Results

Comparison of inverse and Wiener filtering:

(a) Result of full inverse filtering of Fig. 5.28(b).
(b) Radially limited inverse filter result.
(c) Wiener filter result.
Results contd..

FIGURE

(a) 8-bit image corrupted by motion blur and additive noise. (b) Result of inverse filtering. (c) Result of Wiener filtering. (d)–(f) Same sequence; but with noise variance one order of magnitude less. (g)–(i) Same sequence; but noise variance reduced by five orders of magnitude from (a). Note in (h) how the deblurred image is quite visible through a “curtain” of noise.
Towards super-resolution
Observe the model again
Researchers in digital image processing and computer vision use the term resolution in three different ways:

- **Spatial resolution**
- **Brightness resolution**
- **Temporal resolution**
Illustration of resolution

Fig. The concept of *spatial resolution* illustrated for a pin-hole camera.
How to get high resolution image?

- Pay extra amount of money and buy HR camera – which is of course not a feasible solution.

- The storage requirement will be increased – we don’t want that.

- Increase the number of pixels per unit area that means reduce pixel size. Reducing pixel size less than 40µm2 incorporates shot noise in the image – do we need noisy image??

- Increase the chip size of the camera, so that number of pixels can be increased. But increasing chip size means increase in capacitance and this will slow down the image acquisition process – so this approach is not considered effective.
Super-Resolution Imaging

The problem is shown pictorially:

LR - Low Resolution
HR - High Resolution

i.e. the method of obtaining a HR image from the degraded LR image(s) is called SR.
When do we need SR?

- **Medical Imaging:**

 - Magnetic Resonance Imaging Scanner
 - Brain Image
 - Magnified region of interest (ROI) part of the image
When do we need SR? (contd.)

- Remote sensing:

 - Satellite dedicated for RS
 - This Landsat image of the Missouri River links to a remote-sensing activity for the Event-Based Science Flood! unit.
 - Magnified ROI part Image shows flood waters as they recede (October 4, 1993).

(From: NASA/Goddard Space Flight Center)
When do we need SR? (contd.)

- Surveillance applications:

 Surveillance camera

 Corridor

 Magnified ROI
 (here face region)

 and many more...
SR classification

- Based on the number of LR images required to perform SR, it can be classified into two classes:
 - Multiple image SR,
 - Single image SR.
Multiple image SR

- Multiple sub-pixel shifted LR images are required to perform SR.
Most of the multiple images SR follow the following scheme:
Single image SR

- When multiple LR images of the same scene are not available, the only available option is single image SR, that is the major advantage over multiple image SR.

- In single image SR, information are adopted from other HR (random) images.
Results

a) LR Image

b) Reconstructed HR image
Results contd..

Input LR video (180×256) – Resized
Results contd..
References

- Lecture slides by Dr. Brian Mac Namee (http://www.comp.dit.ie/bmacnamee/index.htm)
- Lecture notes by Dr. Anil K Sao (http://www.iitmandi.ac.in/institute/facultyhomepages/aSao.html)
Questions??

Thank You!!

For more information regarding my work please visit
http://www.students.iitmandi.ac.in/~srimanta_mandal/